Finitary Definitions of Multicategory

 $CT20 \rightarrow 21$ Genova

Gabriele Lobbia joint work with John Bourke

September 2021

University of Leeds

Introduction

Monoidal Cats $(\mathbb{C}, \otimes, \ldots)$

Pros: Finitary and infinitary, nice definition Cons: tensor less direct (colim)

Closed Cats ($\mathbb{C}, [-, -], \ldots$)

Pros: Finitary, homs are more explicit (lim) Cons: Iterated homs

Multicats

Pros: use only universal properties, no lim/colim **Cons:** Only infinitary...

Monoidal Cats $(\mathbb{C}, \otimes, \ldots)$

Pros: Finitary and infinitary,

nice definition

Cons: tensor less direct (colim)

Closed Cats ($\mathbb{C}, [-, -], \ldots$)

Pros: Finitary, homs are more explicit (lim)

Cons: Iterated homs

Multicats

Pros: use only universal properties, no lim/colim **Cons:** Only infinitary...

Monoidal Cats $(\mathbb{C}, \otimes, \ldots)$

Pros: Finitary and infinitary,

nice definition

Cons: tensor less direct (colim)

Closed Cats ($\mathbb{C}, [-, -], \ldots$)

Pros: Finitary, homs are more explicit (lim)

Cons: Iterated homs

Multicats

Pros: use only universal properties, no lim/colim **Cons:** Only infinitary...

Classical Multicategories

A multicategory \mathcal{C} consists of:

• a collection of **objects**

- for each (possibly empty) list a₁, ..., a_n of objects and each object b, a set C_n(a₁, ..., a_n; b), or C_n(ā; b), of n-multimaps
- for each object a an element $1_a \in \mathcal{C}_1(a; a)$
- substitution operations (with $K = \sum_{i=1}^{n} k_i$)

$$egin{aligned} &\mathcal{C}_n(b_1,...,b_n;c) imes \prod_{i=1}^n\mathcal{C}_{k_i}(ar{a}_i;b_i) o \mathcal{C}_K(ar{a}_1,..,ar{a}_n;c)\ &(g,f_1,...,f_n)\mapsto g(f_1,...,f_n) \end{aligned}$$

A multicategory C consists of:

- a collection of **objects**
- for each (possibly empty) list a₁, ..., a_n of objects and each object b, a set C_n(a₁, ..., a_n; b), or C_n(ā; b), of n-multimaps
- for each object a an element $1_a \in \mathcal{C}_1(a; a)$
- substitution operations (with $K = \sum_{i=1}^{n} k_i$)

$$egin{aligned} \mathcal{C}_n(b_1,...,b_n;c) imes \prod_{i=1}^n \mathcal{C}_{k_i}(ar{a}_i;b_i) o \mathcal{C}_K(ar{a}_1,..,ar{a}_n;c) \ (g,f_1,...,f_n) \mapsto g(f_1,...,f_n) \end{aligned}$$

A multicategory C consists of:

- a collection of **objects**
- for each (possibly empty) list a₁, ..., a_n of objects and each object b, a set C_n(a₁, ..., a_n; b), or C_n(ā; b), of n-multimaps
- for each object a an element $1_a \in \mathcal{C}_1(a; a)$
- substitution operations (with $K = \sum_{i=1}^{n} k_i$)

$$egin{aligned} &\mathcal{C}_n(b_1,...,b_n;c) imes \prod_{i=1}^n \mathcal{C}_{k_i}(ar{a}_i;b_i) o \mathcal{C}_{\mathcal{K}}(ar{a}_1,..,ar{a}_n;c) \ &(g,f_1,...,f_n) \mapsto g(f_1,...,f_n) \end{aligned}$$

A multicategory C consists of:

- a collection of **objects**
- for each (possibly empty) list a₁, ..., a_n of objects and each object b, a set C_n(a₁, ..., a_n; b), or C_n(ā; b), of n-multimaps
- for each object a an element $1_a \in \mathcal{C}_1(a;a)$
- substitution operations (with $K = \sum_{i=1}^{n} k_i$)

$$egin{aligned} &\mathcal{C}_n(b_1,...,b_n;c) imes \prod_{i=1}^n \mathcal{C}_{k_i}(ar{a}_i;b_i) o \mathcal{C}_{\mathcal{K}}(ar{a}_1,..,ar{a}_n;c)\ &(g,f_1,...,f_n)\mapsto g(f_1,...,f_n) \end{aligned}$$

 For n ∈ N a profunctor C_n(-;-): (Cⁿ)^{op} × C → Set of n-multimaps (such that, when n = 1, we have C₁(-;-) = C(-,-): C^{op} × C → Set)

• For $n, m \in \mathbb{N}$, (natural) special substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(these are the substitutions of the kind $g \circ_i f = g(1, ..., 1, f, 1, ..., 1))$

Then, we require identity laws and "associativity equations" of the form:

$$h \circ_i (g \circ_j f) = (h \circ_i g) \circ_{j+i-1} f \quad \text{for} \quad 1 \le i \le m, 1 \le j \le n \tag{1}$$
$$(h \circ_i g) \circ_{n+j-1} f = (h \circ_j f) \circ_i g \quad \text{for} \quad 1 \le i < j \le m \tag{2}$$

(Note: If we have \circ_i then, $g(f_1,...,f_n):=(...((g \circ_1 f_1) \circ_{k_1+1} f_2)...) \circ_{\mathcal{K}-k_n+1} f_n)$

 For n ∈ N a profunctor C_n(-; -): (Cⁿ)^{op} × C → Set of n-multimaps (such that, when n = 1, we have C₁(-; -) = C(-, -): C^{op} × C → Set)

• For $n, m \in \mathbb{N}$, (natural) special substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(these are the substitutions of the kind $g \circ_i f = g(1, ..., 1, f, 1, ..., 1)$)

Then, we require identity laws and "associativity equations" of the form:

$$h \circ_i (g \circ_j f) = (h \circ_i g) \circ_{j+i-1} f \quad \text{for} \quad 1 \le i \le m, 1 \le j \le n \tag{1}$$
$$(h \circ_i g) \circ_{n+j-1} f = (h \circ_j f) \circ_i g \quad \text{for} \quad 1 \le i < j \le m \tag{2}$$

(Note: If we have \circ_i then, $g(f_1,...,f_n):=(...((g \circ_1 f_1) \circ_{k_1+1} f_2)...) \circ_{K-k_n+1} f_n)$

- For n ∈ N a profunctor C_n(-; -): (Cⁿ)^{op} × C → Set of n-multimaps (such that, when n = 1, we have C₁(-; -) = C(-, -): C^{op} × C → Set)
- For $n, m \in \mathbb{N}$, (natural) special substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(these are the substitutions of the kind $g \circ_i f = g(1, ..., 1, f, 1, ..., 1)$)

Then, we require identity laws and "associativity equations" of the form:

$$h \circ_i (g \circ_j f) = (h \circ_i g) \circ_{j+i-1} f \quad \text{for} \quad 1 \le i \le m, 1 \le j \le n \tag{1}$$
$$(h \circ_i g) \circ_{n+j-1} f = (h \circ_j f) \circ_i g \quad \text{for} \quad 1 \le i < j \le m \tag{2}$$

 $({\sf Note:} \ {\sf If} \ {\sf we} \ {\sf have} \ \circ_i \ {\sf then}, \ g(f_1,...,f_n):=(...((g \ \circ_1 \ f_1) \circ_{k_1+1} \ f_2)...) \circ_{{\cal K}-k_n+1} f_n)$

- For n ∈ N a profunctor C_n(-; -): (Cⁿ)^{op} × C → Set of n-multimaps (such that, when n = 1, we have C₁(-; -) = C(-, -): C^{op} × C → Set)
- For $n, m \in \mathbb{N}$, (natural) special substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(these are the substitutions of the kind $g \circ_i f = g(1, ..., 1, f, 1, ..., 1)$)

Then, we require identity laws and "associativity equations" of the form:

$$h \circ_i (g \circ_j f) = (h \circ_i g) \circ_{j+i-1} f \quad \text{for} \quad 1 \le i \le m, 1 \le j \le n \tag{1}$$
$$(h \circ_i g) \circ_{n+j-1} f = (h \circ_j f) \circ_i g \quad \text{for} \quad 1 \le i < j \le m \tag{2}$$

(Note: If we have \circ_i then, $g(f_1,...,f_n):=(...((g\circ_1 f_1)\circ_{k_1+1} f_2)...)\circ_{\mathcal{K}-k_n+1} f_n)$

- For n ∈ N a profunctor C_n(-; -): (Cⁿ)^{op} × C → Set of n-multimaps (such that, when n = 1, we have C₁(-; -) = C(-, -): C^{op} × C → Set)
- For $n, m \in \mathbb{N}$, (natural) special substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(these are the substitutions of the kind $g \circ_i f = g(1, ..., 1, f, 1, ..., 1))$

Then, we require identity laws and "associativity equations" of the form:

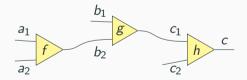
$$h \circ_i (g \circ_j f) = (h \circ_i g) \circ_{j+i-1} f$$
 for $1 \le i \le m, 1 \le j \le n$ (1)

$$(h \circ_i g) \circ_{n+j-1} f = (h \circ_j f) \circ_i g$$
 for $1 \le i < j \le m$ (2)

(Note: If we have \circ_i then, $g(f_1, ..., f_n) := (...((g \circ_1 f_1) \circ_{k_1+1} f_2)...) \circ_{K-k_n+1} f_n)$

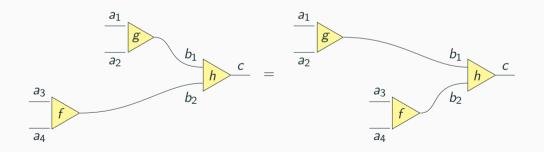
$$h,g$$
 and f binary maps, $i=1$ and $j=2$

$$(h \circ_1 g) \circ_2 f = h \circ_1 (g \circ_2 f)$$



Example of (2)

h, g and f binary maps, i = 1 and j = 2 $(h \circ_1 g) \circ_3 f = (h \circ_2 f) \circ_1 g$



Finitary Multicategories

A finitary multicategory consists of a category ${\mathbb C}$ together with:

- For $n \leq 4$ a profunctor $C_n(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \mathbf{Set}$ (such that, when n = 1, we have $C_1(-; -) = \mathbb{C}(-, -) : \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$)
- For $(n, m) \in \{(2, 2), (3, 2), (2, 3), (2, 0), (3, 0)\}$, (natural) substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(substitution of binary into binary/ternary, ternary into binary and nullary into binary/ternary)

Then, we require identity laws and "associativity equations" of the form:

 $f \circ_{l} (g \circ_{j} h) = (f \circ_{l} g) \circ_{j+l-1} h$ $(f \circ_{1} g) \circ_{n+1} h = (f \circ_{2} h) \circ_{1} g$

A finitary multicategory consists of a category ${\mathbb C}$ together with:

- For n ≤ 4 a profunctor C_n(-; -): (ℂⁿ)^{op} × ℂ → Set (such that, when n = 1, we have C₁(-; -) = ℂ(-, -): ℂ^{op} × ℂ → Set)
- For $(n, m) \in \{(2, 2), (3, 2), (2, 3), (2, 0), (3, 0)\}$, (natural) substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(substitution of binary into binary/ternary, ternary into binary and nullary into binary/ternary)

Then, we require identity laws and "associativity equations" of the form:

 $f \circ_{l} (g \circ_{j} h) = (f \circ_{l} g) \circ_{j+l-1} h$ $(f \circ_{1} g) \circ_{n+1} h = (f \circ_{2} h) \circ_{1} g$

A finitary multicategory consists of a category ${\mathbb C}$ together with:

- For n ≤ 4 a profunctor C_n(-; -): (ℂⁿ)^{op} × ℂ → Set (such that, when n = 1, we have C₁(-; -) = ℂ(-, -): ℂ^{op} × ℂ → Set)
- For $(n, m) \in \{(2, 2), (3, 2), (2, 3), (2, 0), (3, 0)\}$, (natural) substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(substitution of binary into binary/ternary, ternary into binary and nullary into binary/ternary)

Then, we require identity laws and "associativity equations" of the form:

$$f \circ_i (g \circ_j h) = (f \circ_i g) \circ_{j+i-1} h$$
$$(f \circ_1 g) \circ_{n+1} h = (f \circ_2 h) \circ_1 g$$

A finitary multicategory consists of a category ${\mathbb C}$ together with:

- For n ≤ 4 a profunctor C_n(-; -): (Cⁿ)^{op} × C → Set (such that, when n = 1, we have C₁(-; -) = C(-, -): C^{op} × C → Set)
- For $(n, m) \in \{(2, 2), (3, 2), (2, 3), (2, 0), (3, 0)\}$, (natural) substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(substitution of binary into binary/ternary, ternary into binary and nullary into binary/ternary)

Then, we require identity laws and "associativity equations" of the form:

$$f \circ_i (g \circ_j h) = (f \circ_i g) \circ_{j+i-1} h$$
$$(f \circ_1 g) \circ_{n+1} h = (f \circ_2 h) \circ_1 g$$

A finitary multicategory consists of a category $\mathbb C$ together with:

- For n ≤ 4 a profunctor C_n(-; -): (Cⁿ)^{op} × C → Set (such that, when n = 1, we have C₁(-; -) = C(-, -): C^{op} × C → Set)
- For $(n, m) \in \{(2, 2), (3, 2), (2, 3), (2, 0), (3, 0)\}$, (natural) substitution functions

$$\circ_i: \mathcal{C}_n(ar{b}; c) imes \mathcal{C}_m(ar{a}; b_i) o \mathcal{C}_{n+m-1}(b_{< i}, ar{a}, b_{> i}; c)$$

(substitution of binary into binary/ternary, ternary into binary and nullary into binary/ternary)

Then, we require identity laws and "associativity equations" of the form:

$$f \circ_i (g \circ_j h) = (f \circ_i g) \circ_{j+i-1} h$$

 $(f \circ_1 g) \circ_{n+1} h = (f \circ_2 h) \circ_1 g$

Left Representability

n-ary map classifier for \bar{a} consists of a representation of $C_n(\bar{a}; -) : C \to \mathbf{Set}$ i.e. a (universal) multimap $\theta_a : a_1, \ldots, a_n \to m(a_1, \ldots, a_n)$ inducing bijections

 $-\circ heta_a: \mathcal{C}_1(m(a_1,\ldots,a_n);b) \to \mathcal{C}_n(a_1,\ldots,a_n;b)$

a universal multimap is said to be left representable if it induces bijections

$$-\circ_1 \theta_a \colon \mathcal{C}_{1+k}(m(a_1,\ldots,a_n),\bar{x};b) \to \mathcal{C}_{n+k}(a_1,\ldots,a_n,\bar{x};b)$$

Definition

A finitary multicategory C is said to be left representable if it admits left universal nullary and binary map classifiers u and $\theta_{a,b}$.

Left Representability

n-ary map classifier for \bar{a} consists of a representation of $C_n(\bar{a}; -) : C \to \mathbf{Set}$ i.e. a (universal) multimap $\theta_a: a_1, \ldots, a_n \to m(a_1, \ldots, a_n)$ inducing bijections

 $-\circ heta_a: \mathcal{C}_1(m(a_1,\ldots,a_n);b) \to \mathcal{C}_n(a_1,\ldots,a_n;b)$

a universal multimap is said to be left representable if it induces bijections

$$-\circ_1 \theta_a \colon \mathcal{C}_{1+k}(m(a_1,\ldots,a_n),\bar{x};b) \to \mathcal{C}_{n+k}(a_1,\ldots,a_n,\bar{x};b)$$

Definition

A finitary multicategory C is said to be left representable if it admits left universal nullary and binary map classifiers u and $\theta_{a,b}$.

Left Representability

n-ary map classifier for \bar{a} consists of a representation of $C_n(\bar{a}; -) : C \to \mathbf{Set}$ i.e. a (universal) multimap $\theta_a: a_1, \ldots, a_n \to m(a_1, \ldots, a_n)$ inducing bijections

 $-\circ \theta_a: \mathcal{C}_1(m(a_1,\ldots,a_n);b) \rightarrow \mathcal{C}_n(a_1,\ldots,a_n;b)$

a universal multimap is said to be left representable if it induces bijections

$$-\circ_1 \theta_a \colon \mathcal{C}_{1+k}(m(a_1,\ldots,a_n),\bar{x};b) \to \mathcal{C}_{n+k}(a_1,\ldots,a_n,\bar{x};b)$$

Definition

A finitary multicategory C is said to be left representable if it admits left universal nullary and binary map classifiers u and $\theta_{a,b}$.

One proves that the following multimaps are 3-ary and unary map classifier:

Aim: construct a functor K: FMult₁ \rightarrow Skew₁.

$$lpha\colon (\mathsf{ab})\mathsf{c} o \mathsf{a}(\mathsf{bc})\in\mathbb{C}((\mathsf{ab})\mathsf{c},\mathsf{a}(\mathsf{bc}))=\mathcal{C}_1((\mathsf{ab})\mathsf{c};\mathsf{a}(\mathsf{bc}))\cong\mathcal{C}_3(\mathsf{a},\mathsf{b},\mathsf{c};\mathsf{a}(\mathsf{bc}))$$

One proves that the following multimaps are 3-ary and unary map classifier:

Aim: construct a functor K: **FMult**_{*I*} \rightarrow **Skew**_{*I*}.

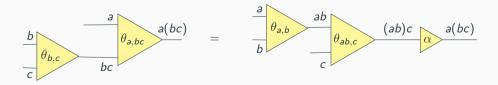
$$lpha\colon (\mathsf{ab})\mathsf{c} o \mathsf{a}(\mathsf{bc})\in\mathbb{C}((\mathsf{ab})\mathsf{c},\mathsf{a}(\mathsf{bc}))=\mathcal{C}_1((\mathsf{ab})\mathsf{c};\mathsf{a}(\mathsf{bc}))\cong\mathcal{C}_3(\mathsf{a},\mathsf{b},\mathsf{c};\mathsf{a}(\mathsf{bc}))$$

9

One proves that the following multimaps are 3-ary and unary map classifier:

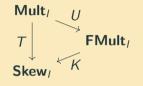
Aim: construct a functor K: **FMult**_{*I*} \rightarrow **Skew**_{*I*}.

$$lpha \colon (\mathsf{ab}) \mathsf{c} o \mathsf{a}(\mathsf{bc}) \in \mathbb{C}((\mathsf{ab})\mathsf{c},\mathsf{a}(\mathsf{bc})) = \mathcal{C}_1((\mathsf{ab})\mathsf{c};\mathsf{a}(\mathsf{bc})) \cong \mathcal{C}_3(\mathsf{a},\mathsf{b},\mathsf{c};\mathsf{a}(\mathsf{bc}))$$



Theorem (Bourke & Lobbia)

There is an equivalence $U: Mult_I \rightarrow FMult_I$ fitting in the diagram

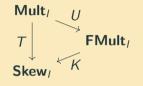


Proof (Sketch).

- 1. Prove that K is fully faithful (using a characterisation of morphisms in \mathbf{FMult}_{I}).
- 2. T is an equivalence (Bourke & Lack), hence K is essentially surjective.
- 3. U is an equivalence as well.

Theorem (Bourke & Lobbia)

There is an equivalence $U: Mult_I \rightarrow FMult_I$ fitting in the diagram



Proof (Sketch).

- 1. Prove that K is fully faithful (using a characterisation of morphisms in \mathbf{FMult}_{l}).
- 2. T is an equivalence (Bourke & Lack), hence K is essentially surjective.
- 3. U is an equivalence as well.

Left Representable Closed

A finitary multicategory is (left) **closed** if there exists an object [b, c] and binary map $e_{b,c}$: $[b, c], b \rightarrow c$ inducing isomorphisms (for n = 0, 1, 2, 3)

$$e_{b,c} \circ_1 -: \mathcal{C}_n(\overline{x}; [b, c]) \to \mathcal{C}_{n+1}(\overline{x}, b; c)$$

Theorem (Bourke & Lobbia)

The equivalence K: **FMult**_{*l*} \rightarrow **Skew**_{*l*} induces another one K_c : **FMult**_{*l*}^{*cl*} \rightarrow **Skew**_{*l*}^{*cl*} between finitary left representable closed multicategories and left normal skew closed monoidal categories.

Remark: There is also an equivalence **FMult**^{$cl} <math>\rightarrow$ **Closed** between closed finitary multicategories with unit and *closed categories*.</sup>

Left Representable Closed

A finitary multicategory is (left) **closed** if there exists an object [b, c] and binary map $e_{b,c}$: $[b, c], b \rightarrow c$ inducing isomorphisms (for n = 0, 1, 2, 3)

$$e_{b,c} \circ_1 -: \mathcal{C}_n(\overline{x}; [b, c]) \to \mathcal{C}_{n+1}(\overline{x}, b; c)$$

Theorem (Bourke & Lobbia)

The equivalence K: **FMult**_{*l*} \rightarrow **Skew**_{*l*} induces another one K_c : **FMult**_{*l*}^{*cl*} \rightarrow **Skew**_{*l*}^{*cl*} between finitary left representable closed multicategories and left normal skew closed monoidal categories.

Remark: There is also an equivalence $\mathbf{FMult}^{cl} \rightarrow \mathbf{Closed}$ between closed finitary multicategories with unit and *closed categories*.

Finitary Skew Multicategories

A skew multicategory (Bourke & Lack, J.Alg., 2018) ${\cal C}$ consists of

- \bullet a set of objects \mathcal{C}_0
- for each $x \in C_0$ a set $C'_0(; x)$ of **nullary maps**
- for each $\bar{a}, b \in C_0$ two sets $C_n^t(\bar{a}; b)$ and $C_n^t(\bar{a}; b)$ of tight/loose n-multimaps
- for each n > 0, $\bar{a}, b \in C_0$ a function $j_{\bar{a},b} \colon C_n^t(\bar{a}; b) \to C_n^t(\bar{a}; b)$

("inclusion" of tight multimaps into loose ones)

- for each $x \in \mathcal{C}$ a tight multimap $1_x \in \mathcal{C}_1^t(x;x)$
- substitution operation $g(f_1, \ldots, f_n)$, which is tight just when g and f_1 are.

+ associativity and unit axioms.

A skew multicategory (Bourke & Lack, J.Alg., 2018) ${\cal C}$ consists of

- a set of objects \mathcal{C}_0
- for each $x \in C_0$ a set $C'_0(; x)$ of **nullary maps**
- for each $\bar{a}, b \in C_0$ two sets $C_n^t(\bar{a}; b)$ and $C_n^t(\bar{a}; b)$ of tight/loose n-multimaps
- for each n > 0, $\bar{a}, b \in C_0$ a function $j_{\bar{a},b} \colon C_n^t(\bar{a}; b) \to C_n^t(\bar{a}; b)$

("inclusion" of tight multimaps into loose ones)

- for each $x \in \mathcal{C}$ a tight multimap $1_x \in \mathcal{C}_1^t(x;x)$
- substitution operation $g(f_1, \ldots, f_n)$, which is tight just when g and f_1 are.

+ associativity and unit axioms.

A skew multicategory (Bourke & Lack, J.Alg., 2018) ${\cal C}$ consists of

- a set of objects \mathcal{C}_0
- for each $x \in C_0$ a set $C'_0(; x)$ of **nullary maps**
- for each $\bar{a}, b \in C_0$ two sets $C_n^t(\bar{a}; b)$ and $C_n^t(\bar{a}; b)$ of tight/loose n-multimaps
- for each n > 0, $\bar{a}, b \in C_0$ a function $j_{\bar{a},b} \colon C_n^t(\bar{a}; b) \to C_n^t(\bar{a}; b)$ ("inclusion" of tight multimaps into loose ones)
- for each $x \in \mathcal{C}$ a tight multimap $1_x \in \mathcal{C}_1^t(x;x)$
- substitution operation $g(f_1, \ldots, f_n)$, which is tight just when g and f_1 are.

+ associativity and unit axioms.

A skew multicategory (Bourke & Lack, J.Alg., 2018) ${\cal C}$ consists of

- a set of objects \mathcal{C}_0
- for each $x \in C_0$ a set $C'_0(; x)$ of **nullary maps**
- for each $\bar{a}, b \in C_0$ two sets $C_n^t(\bar{a}; b)$ and $C_n^t(\bar{a}; b)$ of **tight/loose n-multimaps**
- for each n > 0, $\bar{a}, b \in C_0$ a function $j_{\bar{a},b} \colon C_n^t(\bar{a}; b) \to C_n^t(\bar{a}; b)$ ("inclusion" of tight multimaps into loose ones)
- for each $x \in \mathcal{C}$ a tight multimap $1_x \in \mathcal{C}_1^t(x;x)$
- substitution operation $g(f_1, \ldots, f_n)$, which is tight just when g and f_1 are.

+ associativity and unit axioms.

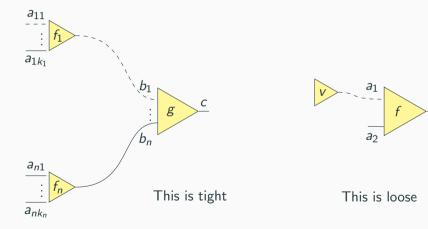
A skew multicategory (Bourke & Lack, J.Alg., 2018) ${\cal C}$ consists of

- a set of objects \mathcal{C}_0 **E.g.** Categories with a choice of finite products
- for each $x \in C_0$ a set $C_0^l(; x)$ of **nullary maps E.g.** objects of A
- for each ā, b ∈ C₀ two sets C^t_n(ā; b) and C^l_n(ā; b) of tight/loose n-multimaps
 E.g. F: A₁ × ... × A_n → B preserving products up-to-iso, tight if strictly in A₁
- for each n > 0, $\bar{a}, b \in C_0$ a function $j_{\bar{a},b} \colon C_n^t(\bar{a}; b) \to C_n^t(\bar{a}; b)$ ("inclusion" of tight multimaps into loose ones)
- for each $x \in \mathcal{C}$ a tight multimap $1_x \in \mathcal{C}_1^t(x;x)$
- substitution operation $g(f_1, \ldots, f_n)$, which is tight just when g and f_1 are.

 $+\ {\rm associativity}$ and unit axioms.

Tight maps

Tight maps are understood as maps "strict" in the first variable.



b

A finitary skew multicategory consists of a category $\mathbb C$ together with:

- For $1 \le n \le 4$ a profunctor $\mathcal{C}_n^t(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \mathbf{Set}$ such that, when n = 1, we have $\mathcal{C}_1^t(-; -) = \mathbb{C}(-, -) : \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$
- For n = 0, 1, 2 an additional profunctor $C_n^l(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \mathbf{Set}$
- For n = 1, 2 natural transformations $j_n : C_n^t(-; -) \to C_n^t(-; -)$
- (natural) substitution functions

$$\circ_i:\mathcal{C}^{\mathsf{x}}_n(\bar{b};c)\times\mathcal{C}^{\mathsf{y}}_m(\bar{a};b_i)\to\mathcal{C}^{\mathsf{x}\circ_i\mathsf{y}}_{n+m-1}(b_{< i},a,b_{> i};c)$$

(mostly with everything tight, except a couple with loose unary)

A finitary skew multicategory consists of a category $\mathbb C$ together with:

- For $1 \le n \le 4$ a profunctor $\mathcal{C}_n^t(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \mathbf{Set}$ such that, when n = 1, we have $\mathcal{C}_1^t(-; -) = \mathbb{C}(-, -) : \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$
- For n = 0, 1, 2 an additional profunctor $\mathcal{C}'_n(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \textbf{Set}$
- For n = 1, 2 natural transformations $j_n : C_n^t(-; -) \to C_n^t(-; -)$
- (natural) substitution functions

$$\circ_i:\mathcal{C}^{\mathsf{x}}_n(\bar{b};c)\times\mathcal{C}^{\mathsf{y}}_m(\bar{a};b_i)\to\mathcal{C}^{\mathsf{x}\circ_i\mathsf{y}}_{n+m-1}(b_{< i},a,b_{> i};c)$$

(mostly with everything tight, except a couple with loose unary)

A finitary skew multicategory consists of a category $\mathbb C$ together with:

- For $1 \le n \le 4$ a profunctor $\mathcal{C}_n^t(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \mathbf{Set}$ such that, when n = 1, we have $\mathcal{C}_1^t(-; -) = \mathbb{C}(-, -) : \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$
- For n = 0, 1, 2 an additional profunctor $\mathcal{C}_n^l(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \textbf{Set}$
- For n = 1, 2 natural transformations $j_n : \mathcal{C}_n^t(-; -) \to \mathcal{C}_n^t(-; -)$
- (natural) substitution functions

$$\circ_i: \mathcal{C}^{\mathsf{x}}_n(\bar{b}; c) \times \mathcal{C}^{\mathsf{y}}_m(\bar{a}; b_i) \to \mathcal{C}^{\mathsf{x} \circ_i \mathsf{y}}_{n+m-1}(b_{< i}, a, b_{> i}; c)$$

(mostly with everything tight, except a couple with loose unary)

A finitary skew multicategory consists of a category $\mathbb C$ together with:

- For $1 \le n \le 4$ a profunctor $\mathcal{C}_n^t(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \mathbf{Set}$ such that, when n = 1, we have $\mathcal{C}_1^t(-; -) = \mathbb{C}(-, -) : \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$
- For n = 0, 1, 2 an additional profunctor $\mathcal{C}_n^l(-; -) : (\mathbb{C}^n)^{op} \times \mathbb{C} \to \textbf{Set}$
- For n = 1, 2 natural transformations $j_n : \mathcal{C}_n^t(-; -) \to \mathcal{C}_n^t(-; -)$
- (natural) substitution functions

$$\circ_i: \mathcal{C}_n^{\mathsf{x}}(\bar{b}; c) \times \mathcal{C}_m^{\mathsf{y}}(\bar{a}; b_i) \to \mathcal{C}_{n+m-1}^{\mathsf{x} \circ_i \mathsf{y}}(b_{< i}, a, b_{> i}; c)$$

(mostly with everything tight, except a couple with loose unary)

Results

Theorem (Bourke & Lobbia)

There are triangles of equivalences (T_1 and T^{cl} already defined by Bourke & Lack)

There are also equivalences with finitary left representable closed skew multicategories.

Bonus Track

In a biclosed multicategory we have isomorphisms

$$\lambda_n \colon C_n(a_1, ..., a_n; b) \cong C_{n-1}(a_1, ..., a_{n-1}; I[a_n, b]) \quad \text{and}$$

$$\rho_n \colon C_n(a_1, ..., a_n; b) \cong C_{n-1}(a_2, ..., a_n; r[a_1, b]).$$

 \Rightarrow we can define \circ_i using these isomorphisms.

Let $f: a_1, a_2
ightarrow b_2$ and $g: b_1, b_2, b_3
ightarrow c$, then we want $g \circ_2 f: b_1, a_1, a_2, b_3
ightarrow c$

$$\begin{array}{c} g: \ b_1, b_2, b_3 \rightarrow c \\ \hline \lambda_3 g: \ b_1, b_2 \rightarrow l[b_3, c] \\ \hline \rho_2(\lambda_3 g): \ b_2 \rightarrow r[\ b_1, l[b_3, c]] \end{array}$$

Then, $ho_2(\lambda_3 g)\circ f$: $a_1,a_2 o r[\,b_1,l[b_3,c]\,]$ and back using ho_3^{-1} and λ_4^{-1} .

In a biclosed multicategory we have isomorphisms

$$\lambda_n \colon C_n(a_1, ..., a_n; b) \cong C_{n-1}(a_1, ..., a_{n-1}; I[a_n, b]) \quad \text{and}$$

$$\rho_n \colon C_n(a_1, ..., a_n; b) \cong C_{n-1}(a_2, ..., a_n; r[a_1, b]).$$

\Rightarrow we can define \circ_i using these isomorphisms.

Let $f:a_1,a_2
ightarrow b_2$ and $g:b_1,b_2,b_3
ightarrow c$, then we want $g\circ_2 f:b_1,a_1,a_2,b_3
ightarrow c$

$$\begin{array}{c} g: \ b_1, b_2, b_3 \rightarrow c \\ \hline \lambda_3 g: \ b_1, b_2 \rightarrow l[b_3, c] \\ \hline \rho_2(\lambda_3 g): \ b_2 \rightarrow r[\ b_1, l[b_3, c]] \end{array}$$

Then, $ho_2(\lambda_3 g)\circ f$: $a_1,a_2
ightarrow r[\,b_1,l[b_3,c]\,]$ and back using ho_3^{-1} and $\lambda_4^{-1}.$

In a biclosed multicategory we have isomorphisms

$$\lambda_n \colon C_n(a_1, ..., a_n; b) \cong C_{n-1}(a_1, ..., a_{n-1}; l[a_n, b]) \quad \text{and}$$
$$\rho_n \colon C_n(a_1, ..., a_n; b) \cong C_{n-1}(a_2, ..., a_n; r[a_1, b]).$$

 \Rightarrow we can define \circ_i using these isomorphisms.

Let $f: a_1, a_2 \rightarrow b_2$ and $g: b_1, b_2, b_3 \rightarrow c$, then we want $g \circ_2 f: b_1, a_1, a_2, b_3 \rightarrow c$

$$\begin{array}{c} g \colon b_1, b_2, b_3 \to c \\ \hline \lambda_3 g \colon b_1, b_2 \to l[b_3, c] \\ \hline \rho_2(\lambda_3 g) \colon b_2 \to r[b_1, l[b_3, c]] \end{array}$$

Then, $ho_2(\lambda_3 g)\circ f$: $a_1,a_2 o r[\,b_1,l[b_3,c]\,]$ and back using ho_3^{-1} and $\lambda_4^{-1}.$

In a biclosed multicategory we have isomorphisms

$$\lambda_n \colon C_n(a_1, ..., a_n; b) \cong C_{n-1}(a_1, ..., a_{n-1}; I[a_n, b]) \quad \text{and}$$

$$\rho_n \colon C_n(a_1, ..., a_n; b) \cong C_{n-1}(a_2, ..., a_n; r[a_1, b]).$$

 \Rightarrow we can define \circ_i using these isomorphisms.

Let $f: a_1, a_2 \rightarrow b_2$ and $g: b_1, b_2, b_3 \rightarrow c$, then we want $g \circ_2 f: b_1, a_1, a_2, b_3 \rightarrow c$

$$\begin{array}{c} g \colon b_1, b_2, b_3 \to c \\ \hline \lambda_3 g \colon b_1, b_2 \to I[b_3, c] \\ \hline \rho_2(\lambda_3 g) \colon b_2 \to r[\,b_1, I[b_3, c]\,] \end{array}$$

Then, $\rho_2(\lambda_3 g) \circ f : a_1, a_2 \to r[b_1, l[b_3, c]]$ and back using ρ_3^{-1} and λ_4^{-1} .

where Φ is a composition of λ 's and ρ 's, P is the profunctor action of $C_n(-; -)$ and Ψ is a composition of λ^{-1} 's and ρ^{-1} 's.

Biclosed multicategories can be defined as biclosed families of profunctors (C, λ, ρ) satisfying some extra equations (corresponding to the associativity equations).

where Φ is a composition of λ 's and ρ 's, P is the profunctor action of $C_n(-; -)$ and Ψ is a composition of λ^{-1} 's and ρ^{-1} 's. **Proposition**

Biclosed multicategories can be defined as biclosed families of profunctors (C, λ, ρ) satisfying some extra equations (corresponding to the associativity equations).