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Introduction



Intro: Pros & Cons

Monoidal Cats (C,⊗, . . .) Closed Cats (C, [−,−], . . .)
Pros: Finitary and infinitary, Pros: Finitary, homs are

nice definition more explicit (lim)

Cons: tensor less direct (colim) Cons: Iterated homs

Multicats

Pros: use only universal

properties, no lim/colim

Cons: Only infinitary...
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Classical Multicategories



Classical Definition

A multicategory C consists of:

• a collection of objects

• for each (possibly empty) list a1, ..., an of objects and each object b, a set

Cn(a1, ..., an; b), or Cn(ā; b), of n-multimaps

• for each object a an element 1a ∈ C1(a; a)

• substitution operations (with K =
∑n

i=1 ki )

Cn(b1, ..., bn; c)×
n∏

i=1

Cki (āi ; bi )→ CK (ā1, .., ān; c)

(g , f1, ..., fn) 7→ g(f1, ..., fn)

We also require associativity conditions and identity laws.

3



Classical Definition

A multicategory C consists of:

• a collection of objects

• for each (possibly empty) list a1, ..., an of objects and each object b, a set

Cn(a1, ..., an; b), or Cn(ā; b), of n-multimaps
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Alternatively, we can define a multicategory as a category C equipped with

• For n ∈ N a profunctor Cn(−;−) : (Cn)op × C→ Set of n-multimaps

(such that, when n = 1, we have C1(−;−) = C(−,−) : Cop × C→ Set)

• For n,m ∈ N, (natural) special substitution functions

◦i : Cn(b̄; c)× Cm(ā; bi )→ Cn+m−1(b<i , ā, b>i ; c)

(these are the substitutions of the kind g ◦i f = g(1, ..., 1, f , 1, ..., 1))

Then, we require identity laws and “associativity equations” of the form:

h ◦i (g ◦j f ) = (h ◦i g) ◦j+i−1 f for 1 ≤ i ≤ m, 1 ≤ j ≤ n (1)

(h ◦i g) ◦n+j−1 f = (h ◦j f ) ◦i g for 1 ≤ i < j ≤ m (2)

(Note: If we have ◦i then, g(f1, ..., fn) := (...((g ◦1 f1) ◦k1+1 f2)...) ◦K−kn+1 fn)
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Example of (1)

h, g and f binary maps, i = 1 and j = 2

(h ◦1 g) ◦2 f = h ◦1 (g ◦2 f )

f

a1

a2

g
b1

b2 h

c1

c2

c
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Example of (2)

h, g and f binary maps, i = 1 and j = 2

(h ◦1 g) ◦3 f = (h ◦2 f ) ◦1 g

f

g

h

b1

b2

f

g

h

b1

b2

c

a1

a2

a3

a4

=
c

a1

a2

a3

a4
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Finitary Multicategories



Definition

A finitary multicategory consists of a category C together with:

• For n ≤ 4 a profunctor Cn(−;−) : (Cn)op × C→ Set

(such that, when n = 1, we have C1(−;−) = C(−,−) : Cop × C→ Set)

• For (n,m) ∈ {(2, 2), (3, 2), (2, 3), (2, 0), (3, 0)}, (natural) substitution functions

◦i : Cn(b̄; c)× Cm(ā; bi )→ Cn+m−1(b<i , ā, b>i ; c)

(substitution of binary into binary/ternary, ternary into binary and nullary into binary/ternary)

Then, we require identity laws and “associativity equations” of the form:

f ◦i (g ◦j h) = (f ◦i g) ◦j+i−1 h

(f ◦1 g) ◦n+1 h = (f ◦2 h) ◦1 g

(f binary, g and h binary/nullary, n arity of g , i , j = 1, 2)
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(substitution of binary into binary/ternary, ternary into binary and nullary into binary/ternary)

Then, we require identity laws and “associativity equations” of the form:

f ◦i (g ◦j h) = (f ◦i g) ◦j+i−1 h

(f ◦1 g) ◦n+1 h = (f ◦2 h) ◦1 g

(f binary, g and h binary/nullary, n arity of g , i , j = 1, 2)

7



Left Representability

n-ary map classifier for ā consists of a representation of Cn(ā;−) : C → Set

i.e. a (universal) multimap θa : a1, . . . , an → m(a1, . . . , an) inducing bijections

− ◦ θa : C1(m(a1, . . . , an); b)→ Cn(a1, . . . , an; b)

a universal multimap is said to be left representable if it induces bijections

− ◦1 θa : C1+k(m(a1, . . . , an), x̄ ; b)→ Cn+k(a1, . . . , an, x̄ ; b)

Definition

A finitary multicategory C is said to be left representable if it admits left universal

nullary and binary map classifiers u and θa,b.
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One proves that the following multimaps are 3-ary and unary map classifier:

θa,b
θab,c

ab

c

a

b

(ab)c u

θ

i

a

ia

Aim: construct a functor K : FMultl → Skewl .

α : (ab)c → a(bc) ∈ C((ab)c , a(bc)) = C1((ab)c ; a(bc)) ∼= C3(a, b, c ; a(bc))

θb,c

θa,bc

a

bc

θa,b
θab,c

ab

c

α
a(bc)

b

c

=
(ab)c a(bc)

a

b
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Theorem (Bourke & Lobbia)

There is an equivalence U : Multl → FMultl fitting in the diagram

Multl

FMultl

Skewl

U

K

T

Proof (Sketch).

1. Prove that K is fully faithful (using a characterisation of morphisms in FMultl).

2. T is an equivalence (Bourke & Lack), hence K is essentially surjective.

3. U is an equivalence as well.
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Left Representable Closed

A finitary multicategory is (left) closed if there exists an object [b, c] and binary map

eb,c : [b, c], b → c inducing isomorphisms (for n = 0, 1, 2, 3)

eb,c ◦1 − : Cn(x ; [b, c])→ Cn+1(x , b; c)

Theorem (Bourke & Lobbia)

The equivalence K : FMultl → Skewl induces another one Kc : FMultcll → Skewcl
l

between finitary left representable closed multicategories and left normal skew closed

monoidal categories.

Remark: There is also an equivalence FMultcl → Closed between closed finitary

multicategories with unit and closed categories.
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Finitary Skew Multicategories



Skew Multicategories

A skew multicategory (Bourke & Lack, J.Alg., 2018) C consists of

• a set of objects C0

• for each x ∈ C0 a set C l0( ; x) of nullary maps

• for each ā, b ∈ C0 two sets Ctn(ā; b) and C ln(ā; b) of tight/loose n-multimaps

• for each n > 0, ā, b ∈ C0 a function jā,b : Ctn(ā; b)→ C ln(ā; b)

(“inclusion” of tight multimaps into loose ones)

• for each x ∈ C a tight multimap 1x ∈ Ct1(x ; x)

• substitution operation g(f1, . . . , fn), which is tight just when g and f1 are.

+ associativity and unit axioms.
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Skew Multicategories

A skew multicategory (Bourke & Lack, J.Alg., 2018) C consists of

• a set of objects C0 E.g. Categories with a choice of finite products

• for each x ∈ C0 a set C l0( ; x) of nullary maps E.g. objects of A

• for each ā, b ∈ C0 two sets Ctn(ā; b) and C ln(ā; b) of tight/loose n-multimaps

E.g. F : A1 × . . .× An → B preserving products up-to-iso, tight if strictly in A1

• for each n > 0, ā, b ∈ C0 a function jā,b : Ctn(ā; b)→ C ln(ā; b)

(“inclusion” of tight multimaps into loose ones)

• for each x ∈ C a tight multimap 1x ∈ Ct1(x ; x)
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Tight maps

Tight maps are understood as maps “strict” in the first variable.

fn...

f1...

g

b1

bn

...
c

a11

a1k1

an1

ankn

v

f

a1

a2

b

This is looseThis is tight
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Finitary Version

A finitary skew multicategory consists of a category C together with:

• For 1 ≤ n ≤ 4 a profunctor Ctn(−;−) : (Cn)op × C→ Set

such that, when n = 1, we have Ct1(−;−) = C(−,−) : Cop × C→ Set

• For n = 0, 1, 2 an additional profunctor C ln(−;−) : (Cn)op × C→ Set

• For n = 1, 2 natural transformations jn : Ctn(−;−)→ C ln(−;−)

• (natural) substitution functions

◦i : Cxn (b̄; c)× Cym(ā; bi )→ Cx◦iyn+m−1(b<i , a, b>i ; c)

(mostly with everything tight, except a couple with loose unary)

+ associativity (just tight binary and nullary maps), unit axioms...

...and compatibility of j with substitutions.
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Results

Theorem (Bourke & Lobbia)

There are triangles of equivalences (Tl and T cl already defined by Bourke & Lack)

SkMultl

FSkMultl

Skew

Ul

Kl

Tl and

SkMultcl

FSkMultcl

SkewCl.

Ucl

K cl

T cl

There are also equivalences with finitary left representable closed skew

multicategories.
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Bonus Track



Biclosed Multicategories

In a biclosed multicategory we have isomorphisms

λn : Cn(a1, ..., an; b) ∼= Cn−1(a1, ..., an−1; l [an, b]) and

ρn : Cn(a1, ..., an; b) ∼= Cn−1(a2, ..., an; r [a1, b]).

⇒ we can define ◦i using these isomorphisms.

Let f : a1, a2 → b2 and g : b1, b2, b3 → c , then we want g ◦2 f : b1, a1, a2, b3 → c

g : b1, b2, b3 → c

λ3g : b1, b2 → l [b3, c]

ρ2(λ3g) : b2 → r [ b1, l [b3, c] ]

Then, ρ2(λ3g) ◦ f : a1, a2 → r [ b1, l [b3, c] ] and back using ρ−1
3 and λ−1

4 .
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Cm(b̄; c)× Cn(ā; bi )

C1(bi ; r [bi−1, ...r [b1, l [bi+1, ...l [bm, c]...]]])× Cn(ā; bi )

Cn(ā; r [bi−1, ...r [b1, l [bi+1, ...l [bm, c]...]]])

Cn+m−1(b1, ...bi−1, ā, bi+1, ..., bn; c)

Φ

P

Ψ

where Φ is a composition of λ’s and ρ’s, P is the profunctor action of Cn(−;−) and

Ψ is a composition of λ−1’s and ρ−1’s.
Proposition

Biclosed multicategories can be defined as biclosed families of profunctors (C, λ, ρ)

satisfying some extra equations (corresponding to the associativity equations).
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