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Classical Multicategories



A multicategory C consists of:

® 2 collection of objects

for each (possibly empty) list aj, ..., a, of objects and each object b, a set
Cn(ai1,...,an; b), or Cn(3; b), of n-multimaps

for each object a an element 1, € Cy(a; a)

substitution operations (with K = Y7, k)

Cn(b >< HCk aj; , %CK( é)_n;C)

(g. ey n) = g(F1, ey )

We also require associativity conditions and identity laws.



Classical Definition

A C consists of:

® 3 collection of objects
e for each (possibly empty) list a1, ..., a, of objects and each object b, a set
Cn(ai, ..., an; b), or Cp(3; b), of n-multimaps

e for each object a an element 1, € Ci(a; a)



Classical Definition

A C consists of:

® 3 collection of objects

e for each (possibly empty) list a1, ..., a, of objects and each object b, a set
Cn(ai, ..., an; b), or Cp(3; b), of n-multimaps

e for each object a an element 1, € Ci(a; a)

® substitution operations (with K = >"7_, k)
n
C,,(bl, ..., bp; C) X Hck,(e?;; b;) — CK(a_l, .., an; C)
i=1

(g,f1,.sn) — g(Ff, ..., )



Classical Definition

A C consists of:

a collection of objects

for each (possibly empty) list a1, ..., a, of objects and each object b, a set
Cn(ai, ..., an; b), or Cp(3; b), of n-multimaps

for each object a an element 1, € Ci(a; a)

substitution operations (with K =7, k)
n
C,,(bl, ..., bp; C) X Hck,(e?;; b;) — CK(a_l, .., an; C)
i=1

(g,f1,.sn) — g(Ff, ..., )

We also require associativity conditions and identity laws.



Alternatively, we can define a multicategory as a category C equipped with



Alternatively, we can define a multicategory as a category C equipped with

® For n € N a profunctor Cp(—; —) : (C")°? x C — Set of n-multimaps
(such that, when n =1, we have C1(—; —) = C(—, —): C® x C — Set)



Alternatively, we can define a multicategory as a category C equipped with

® For n € N a profunctor Cp(—; —) : (C")°? x C — Set of n-multimaps
(such that, when n =1, we have C1(—; —) = C(—, —): C® x C — Set)

e For n,m € N, (natural) special substitution functions

o; : Cn(b; C) X Cm(é; b,') — Cn+m_1(b<,', 5, b>,'; C)

(these are the substitutions of the kind g o; f = g(1,...,1,f,1,...,1))



Alternatively, we can define a multicategory as a category C equipped with

® For n € N a profunctor Cp(—; —) : (C")°? x C — Set of n-multimaps
(such that, when n =1, we have C1(—; —) = C(—, —): C® x C — Set)

e For n,m € N, (natural) special substitution functions

Oj . Cn(b; C) X Cm(é; b/) — Cn+m—1(b<i7 a, b~ C)
(these are the substitutions of the kind g o; f = g(1,...,1,f,1,...,1))
Then, we require identity laws and “associativity equations” of the form:

hoi(gojf)=(hojg)ojti—1f for 1<i<m1<j<n

(hoig)onyj—1f=(hojf)oig for 1<i<j<m



Alternatively, we can define a multicategory as a category C equipped with

® For n € N a profunctor Cp(—; —) : (C")°? x C — Set of n-multimaps
(such that, when n =1, we have C1(—; —) = C(—, —): C® x C — Set)

e For n,m € N, (natural) special substitution functions

Oj . Cn(b; C) X Cm(é; b/) — Cn+m—1(b<i7 a, b~ C)
(these are the substitutions of the kind g o; f = g(1,...,1,f,1,...,1))
Then, we require identity laws and “associativity equations” of the form:

hoi(gojf)=(hojg)ojti—1f for 1<i<m1<j<n

(hoig)onyj—1f=(hojf)oig for 1<i<j<m

(Note: If we have o; then, g(fi, ..., fy) :== (...((g 01 f) 0k 41 £2)-..) OK—kn+1 fn)



h,g and f binary maps, i =1 and j =2

(hoipg)oaf =hoy(goxf)

az



Example of (2)

h,g and f binary maps, i =1 and j =2

(hoyg)ozf =(hoxf)org




Finitary Multicategories
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A finitary multicategory consists of a category C together with:

® For n < 4 a profunctor Cp(—; —) : (C")°P x C — Set
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(forg)ont1 h=(forh)or1 g
(f binary, g and h binary/nullary, n arity of g, i,j = 1,2)
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Definition
A finitary multicategory C is said to be left representable if it admits left universal
nullary and binary map classifiers u and 0, p.
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One proves that the following multimaps are 3-ary and unary map classifier:
b ia
a

a: (ab)c — a(bc) € C((ab)c, a(bc)) = Ci((ab)c; a(bc)) = C3(a, b, ¢; a(bc))

Aim: construct a functor K: FMult; — Skew;.

(ab)c | a(bc)
9ab,c ‘ «@




Theorem (Bourke & Lobbia)
There is an equivalence U: Mult; — FMult, fitting in the diagram
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Theorem (Bourke & Lobbia)
There is an equivalence U: Mult; — FMult, fitting in the diagram

Mult, U
™~
T FMult,

Skew,

Proof (Sketch).
1. Prove that K is fully faithful (using a characterisation of morphisms in FMult,).

2. T is an equivalence (Bourke & Lack), hence K is essentially surjective.

3. U is an equivalence as well.
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Left Representable Closed

A finitary multicategory is (left) closed if there exists an object [b, c] and binary map
epc: b, c], b — c inducing isomorphisms (for n=0,1,2,3)

epc 01 —: Cn(X; [b, c]) = Cnt1(X, b; €)
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Left Representable Closed

A finitary multicategory is (left) closed if there exists an object [b, c| and binary map
epc: b, c], b — c inducing isomorphisms (for n=0,1,2,3)

€p,c 01 —: C,-,(Y; [b, C]) — Cn+1(Y, b; C)

Theorem (Bourke & Lobbia)

The equivalence K : FMult; — Skew, induces another one K.: FMuIt,C' — Skew,d

between finitary left representable closed multicategories and left normal skew closed
monoidal categories.

Remark: There is also an equivalence FMult — Closed between closed finitary
multicategories with unit and closed categories.

11



Finitary Skew Multicategories



Skew Multicategories

A skew multicategory (Bourke & Lack, J.Alg., 2018) C consists of

e a set of objects Cy
e for each x € Cp a set Cj( ; x) of nullary maps

e for each 3, b € Cy two sets C5(3; b) and C/(3; b) of tight/loose n-multimaps
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Tight maps

Tight maps are understood as maps “strict” in the first variable.

caa
a1k "
\\ b]_ b\ 31
> oo : b
a2
anl
This is tight This is loose

ank,

13



Finitary Version

A finitary skew multicategory consists of a category C together with:

e For 1 < n <4 a profunctor C5(—; —) : (C")°P x C — Set
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Finitary Version

A finitary skew multicategory consists of a category C together with:

e For 1 < n <4 a profunctor C5(—; —) : (C")°P x C — Set

such that, when n =1, we have C{(—; —) = C(—,—) : C® x C — Set
e For an additional profunctor C/(—; —) : (C")? x C — Set
e For n= 1,2 natural transformations j, : C5(—; —) — Ch(—; —)

e (natural) substitution functions
0j 1 Cy(b;c) x Ch(a; bi) = CriY 1 (b<iya, bsis ©)
(mostly with everything , except a couple with )

+ associativity (just and maps), unit axioms...
...and compatibility of j with substitutions.

14



Results

Theorem (Bourke & Lobbia)
There are triangles of equivalences (T, and T already defined by Bourke & Lack)

SkMult; SkMult®

Ucl
~ ~

T,L FSkMult, and Tc/J FSkMult¢
/ — /
Sy Sanl K

There are also equivalences with finitary left representable closed skew
multicategories.

15
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Biclosed Multicategories

In a biclosed multicategory we have isomorphisms

An: Cn(a1, ...y an b) = Cp_1(a1, ..., an—1; l[an, b))
pn: Cn(ai, ..., an; b) = Cnh_1(a2, ..., an; rlai, b)).

and
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Biclosed Multicategories

In a biclosed multicategory we have isomorphisms
An: Cn(a1,...,an b) =2 Cp_1(a1, ..., an—1; l[an, b]) and
pn: Cn(ai, ..., an; b) = Ch_1(a2, ..., an; rla1, b)).
= we can define o; using these isomorphisms.
Let f: a1,a» — by and g: by, by, b3 — ¢, then we want g oo f:by,a1,ax, b3 — ¢

g b1,b2,b3—>C
)\3g: bl,bz — /[b3, C]
pg(/\3g)3 b2 = r[ bl, /[b3,C]]

Then, pa(A3g) o f: a1, ar — r[ by, I[bs, c]] and back using p3* and A} .

16



Cm(b; c) x Cn(3; by)

[0}

~

Cl(b,'; r[b,-_l, ...r[bl, /[b,'+1, .../[bm, C]]]]) X C,,(E; b,')

P

~

Cn(g; r[b,-_l, ...r[bl, /[bi+17 .../[bm, C]]]])

v

Cnym—1(b1,...bi_1,a, bit1, ..., by; )

where ® is a composition of A's and p's, P is the profunctor action of C,(—; —) and

W is a composition of A™1's and p~'s.



Cm(b; c) x Cn(3; by)

Cl(b,'; I’[b,'_l7 ...r[bl, /[b,'+1

(O]
yod[bm, c]...]]]) x Cn(3; by)

P

Cn(g; r[b,-_l, ...r[bl, /[bi+17 .../[bm, C]]]])

v

Corm1(b1, bj—1,3, bjs1, ..., byi )

where ® is a composition of \'s and p's, P

W is a composition of A" 1's and p~!'s.
Proposition

Biclosed multicategories can be defined as

is the profunctor action of Cp(—; —) and

biclosed families of profunctors (C, \, p)

satisfying some extra equations (corresponding to the associativity equations).
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