Sketches and Classifying Logoi

CT2024, Santiago de Compostela

June 26, 2024

Gabriele Lobbia¹

Università di Bologna

Slobbia.github.io/seminars/

Preprint: arXiv:2403.09264

Finanziato dall'Unione europea NextGenerationEU

¹joint work with Ivan Di Liberti

Logical operations

- Logical operations described with limits & colimits
- Geometric Logic, i.e. arbitrary \lor & fin. \land w/ inf. distr. rule

Topoi (In this talk: Topos = Grothendieck Topos !)

- Logical operations
 described with limits & colimits
- Geometric Logic, i.e. arbitrary \lor & fin. \land w/ inf. distr. rule
 - → Topoi (In this talk: Topos = Grothendieck Topos !)
- λ -ary Geometric Logic, i.e. arbitrary $\bigvee \& (< \lambda)$ -ary \land (w/ distr. rule) \longrightarrow Topoi_{λ} (E.g. Geometric = \aleph_0 -ary Geometric)

- Logical operations described with limits & colimits
- Geometric Logic, i.e. arbitrary \lor & fin. \land w/ inf. distr. rule
 - → Topoi (In this talk: Topos = Grothendieck Topos !)
- λ -ary Geometric Logic, i.e. arbitrary $\vee \& (< \lambda)$ -ary \land (w/ distr. rule) \longrightarrow Topoi_{λ} (E.g. Geometric = \aleph_0 -ary Geometric)
- Aim: Notion of Logos capturing all infinitary logics.

- Logical operations described with to be a colimits
- Geometric Logic, i.e. arbitrary \lor & fin. \land w/ inf. distr. rule

→ Topoi (In this talk: Topos = Grothendieck Topos !)

- λ -ary Geometric Logic, i.e. arbitrary $\bigvee \& (< \lambda)$ -ary \land (w/ distr. rule) \longrightarrow Topoi_{λ} (E.g. Geometric = \aleph_0 -ary Geometric)
- Aim: Notion of Logos capturing all infinitary logics.

Logic Fragment	Presentation	Classifying Object ²
Geometric	Site	Тороѕ
Infinitary	?	?

²i.e. the syntax independent presentation

Logic Fragment	Presentation	Classifying Object ²
Geometric	Site	Тороѕ
Infinitary	?	?

 $J_{(-)}$

Sh

Topoi^{op}

Theorem (Diaconescu for Topoi)

Topoi is (bi)reflective^{*a*} in Morita small sites. MSite

^{*a*}i.e. biadjunction w/ counit a component-wise equivalence

²i.e. the syntax independent presentation

Logic Fragment	Presentation	Classifying Object ²
Geometric	Site	Тороѕ
Infinitary	?	?

 $J_{(-)}$

Sh

⊤ Topoi^{op}

Theorem (Diaconescu for Topoi)

Topoi is (bi)reflective^{*a*} in Morita small sites. MSite

^{*a*}i.e. biadjunction w/ counit a component-wise equivalence

• Aim: Fill in the table.

²i.e. the syntax independent presentation

Logic Fragment	Presentation	Classifying Object ²
Geometric	Site	Тороѕ
Infinitary	?	?

 $J_{(-)}$

Sh

Topoi^{op}

Theorem (Diaconescu for Topoi)

Topoi is (bi)reflective^{*a*} in Morita small sites. MSite

^{*a*}i.e. biadjunction w/ counit a component-wise equivalence

- Aim: Fill in the table.
- How: Diaconescu for sketches.

²i.e. the syntax independent presentation

The Main Character: Sketches

• A sketch $\mathbb{S} = (\mathbb{S}, \mathsf{L}_{\mathbb{S}}, \mathsf{C}_{\mathbb{S}})$ consists of a locally small cat. \mathbb{S} w/

• A sketch $\mathbb{S}=(\mathbb{S},\mathsf{L}_{\mathbb{S}},\mathsf{C}_{\mathbb{S}})$ consists of a locally small cat. \mathbb{S} w/

- a class of (ess. small) cones $L_8 \iff limit part$
- a class of (ess. small) cocones C₈ •••• colimit part

• A sketch $S = (S, L_S, C_S)$ consists of a locally small cat. S w/

• a class of (ess. small) cones $L_8 \iff limit part$

• a class of (ess. small) cocones $C_{S} \longrightarrow colimit part$

• A sketch morphism $F: S \to T$ is a functor $F: S \to T$ s.t. $\forall \delta \in L_S/C_S \quad \exists \pi \in L_T/C_T \quad \text{s.t. } F\delta \cong \pi$ • A sketch $\mathbb{S} = (\mathbb{S}, L_{\mathbb{S}}, C_{\mathbb{S}})$ consists of a locally small cat. \mathbb{S} w/

• a class of (ess. small) cones $L_8 \iff limit part$

• a class of (ess. small) cocones $C_{S} \longrightarrow colimit part$

• A sketch morphism $F: S \to T$ is a functor $F: S \to T$ s.t. $\forall \delta \in L_S/C_S \quad \exists \pi \in L_T/C_T \quad \text{s.t. } F\delta \cong \pi$

• Skt = 2-category of sketches (2-cells = nat. transf.)

• A sketch $\mathbb{S} = (\mathbb{S}, L_{\mathbb{S}}, C_{\mathbb{S}})$ consists of a locally small cat. \mathbb{S} w/

• a class of (ess. small) cones $L_8 \iff limit part$

◦ a class of (ess. small) cocones C_S ← *colimit part*

• A sketch morphism $F: S \to T$ is a functor $F: S \to T$ s.t. $\forall \delta \in L_S/C_S \quad \exists \pi \in L_T/C_T \quad \text{s.t. } F\delta \cong \pi$

• Skt = 2-category of sketches (2-cells = nat. transf.)

Example

 \mathbb{C} cat. w/ finite products $\mapsto (\mathbb{C}, fin. prod. cones, \emptyset) \in Skt$

• Sanity Check: \mathbb{E}

 $\mathsf{topos} \mapsto (\mathbb{E}, \mathsf{fin. lim, all colim}) \in \mathsf{Skt}$

• **Sanity Check:** $\mathbb{E} \ \lambda$ -ary topos $\mapsto (\mathbb{E}, \ \lambda$ -ary lim, all colim) \in Skt

• **Sanity Check:** $\mathbb{E} \ \lambda$ -ary topos $\mapsto (\mathbb{E}, \ \lambda$ -ary lim, all colim) \in Skt

³Notation: we call these test sketches.

 \longleftrightarrow *M*: S \rightarrow C \in Skt w/ C = (C, all lim, all colim)³

³Notation: we call these test sketches.

 \longleftrightarrow *M*: $\mathbb{S} \to \mathbb{C} \in \mathsf{Skt}$ w/ $\mathbb{C} = (\mathbb{C}, \mathsf{all \, lim, all \, colim})^3$

• Idea: For $\mathbb{M} \subseteq \text{Skt}, F: \mathbb{S} \to \mathbb{T}$ is a \mathbb{M} -Morita equivalence iff $\forall \mathcal{M} \in \mathbb{M} \qquad -\circ F: \text{Skt}(\mathbb{S}, \mathcal{M}) \simeq \text{Skt}(\mathbb{T}, \mathcal{M}).$

E.g. $\mathbb{M} = test$ sketches $\leftrightarrow \rightarrow$ having the same *models*

³Notation: we call these test sketches.

 \longleftrightarrow *M*: $\mathbb{S} \to \mathbb{C} \in \mathsf{Skt}$ w/ $\mathbb{C} = (\mathbb{C}, \mathsf{all \, lim, all \, colim})^3$

• Idea: For $\mathbb{M} \subseteq \text{Skt}, F: \mathbb{S} \to \mathbb{T}$ is a \mathbb{M} -Morita equivalence iff $\forall \mathcal{M} \in \mathbb{M} \qquad -\circ F: \text{Skt}(\mathbb{S}, \mathcal{M}) \simeq \text{Skt}(\mathbb{T}, \mathcal{M}).$

E.g. $\mathbb{M} = test$ sketches $\leftrightarrow \rightarrow$ having the same *models*

• Why is this useful?

³Notation: we call these test sketches.

 \longleftrightarrow *M*: $\mathbb{S} \to \mathbb{C} \in \mathsf{Skt}$ w/ $\mathbb{C} = (\mathbb{C}, \mathsf{all \, lim, all \, colim})^3$

• Idea: For $\mathbb{M} \subseteq \text{Skt}, F: S \to \mathfrak{T}$ is a \mathbb{M} -Morita equivalence iff $\forall \mathcal{M} \in \mathbb{M} \qquad -\circ F: \text{Skt}(S, \mathcal{M}) \simeq \text{Skt}(\mathfrak{T}, \mathcal{M}).$

E.g. $\mathbb{M} = test$ sketches $\leftrightarrow \rightarrow$ having the same *models*

• Why is this useful? No spoilers!

³Notation: we call these test sketches.

• $\mathcal{L} \in Skt$ is left iff \mathbb{L} cocomplete and $C_{\mathcal{L}} = all$ colim diagrams.

- $\mathcal{L} \in Skt$ is left iff \mathbb{L} cocomplete and $C_{\mathcal{L}} = all$ colim diagrams.
- $S \in \mathsf{skt}$, $\mathbb{S} \xrightarrow{\gamma} \mathsf{Psh}(\mathbb{S})$

- $\mathcal{L} \in Skt$ is left iff \mathbb{L} cocomplete and $C_{\mathcal{L}} = all$ colim diagrams.
- $S \in \mathsf{skt}$, $\mathbb{S} \xrightarrow{\gamma} \mathsf{Psh}(\mathbb{S})$ $L\left(\begin{array}{c} \neg \end{array} \right)$ $\widehat{\mathbb{S}}$

$$\circ \ \widehat{\mathbb{S}} := \mathcal{H}^{\perp} = \mathsf{Psh}(\mathbb{S})[\mathcal{E}_{\mathcal{H}}^{-1}] \quad \mathsf{w}/$$

 $\mathcal{H} := \{ \rho_{\delta} \colon \mathsf{colim} YD \Rightarrow Ys \mid \delta \colon D \Rightarrow \Delta s \in \mathsf{C}_{\mathcal{S}} \}$

- $\mathcal{L} \in Skt$ is left iff \mathbb{L} cocomplete and $C_{\mathcal{L}} = all$ colim diagrams.
- $S \in \mathsf{skt}$, $\mathbb{S} \xrightarrow{\gamma} \mathsf{Psh}(\mathbb{S})$ $J_{\mathbb{S}} \xrightarrow{::} L \left(\dashv \overset{\gamma}{\Sigma} \right)$ $\widehat{\mathbb{S}}$

•
$$\widehat{\mathbb{S}} := \mathcal{H}^{\perp} = \mathsf{Psh}(\mathbb{S})[\mathcal{E}_{\mathcal{H}}^{-1}] \text{ w/}$$

 $\mathcal{H} := \{ \rho_{\delta} \colon \text{colim} \textbf{YD} \Rightarrow \textbf{Ys} \mid \delta \colon \textbf{D} \Rightarrow \Delta s \in C_{\delta} \}$

• $\widehat{S} := (\widehat{S}, L^m_{J_S}, \text{ all colim diagrams}) w/$ $L^m_{J_S} := \min \text{ structure making } J_S \text{ a limit-sketch morphism}$

• (\mathbb{C}, J) site \longrightarrow Sh (\mathbb{C}) = Classifying Topos of (\mathbb{C}, J)

sites \xrightarrow{Sh} Topoi^{op}

- (\mathbb{C}, J) site \longrightarrow Sh (\mathbb{C}) = Classifying Topos of (\mathbb{C}, J)
- Does $\widehat{(-)}$ restrict to Sh(-) for sites?

- (\mathbb{C}, J) site \longrightarrow Sh (\mathbb{C}) = Classifying Topos of (\mathbb{C}, J)
- Does $\widehat{(-)}$ restrict to Sh(-) for sites?

- (\mathbb{C}, J) site \longrightarrow Sh (\mathbb{C}) = Classifying Topos of (\mathbb{C}, J)
- Does $\widehat{(-)}$ restrict to Sh(-) for sites?

• Why is the 2-cell grey?

- (\mathbb{C}, J) site \longrightarrow Sh (\mathbb{C}) = Classifying Topos of (\mathbb{C}, J)
- Does $\widehat{(-)}$ restrict to Sh(-) for sites?

- Why is the 2-cell grey?
 - 1. Underlying category is the same!

- (\mathbb{C}, J) site \longrightarrow Sh (\mathbb{C}) = Classifying Topos of (\mathbb{C}, J)
- Does $\widehat{(-)}$ restrict to Sh(-) for sites?

- Why is the 2-cell grey?
 - 1. Underlying category is the same!
 - No topos can see the difference (i.e. same models in any topos).
 component-wise is a Topoi-Morita equivalence

• S and \widehat{S} have the same models (i.e. J_S is a Test-Morita equivalence)!

- S and \widehat{S} have the same models (i.e. J_S is a Test-Morita equivalence)!
- Moreover, $J_{\mathcal{S}} : \mathcal{S} \to \widehat{\mathcal{S}}$ is a Left-Morita equivalence, i.e.

 $\forall \mathcal{L} \in \mathsf{LSkt} \qquad - \circ J_{\mathbb{S}} \colon \mathsf{Skt}(\mathbb{S}, \mathcal{L}) \simeq \mathsf{Skt}(\widehat{\mathbb{S}}, \mathcal{L}) = \mathsf{LSkt}(\widehat{\mathbb{S}}, \mathcal{L})$

- S and \widehat{S} have the same models (i.e. J_S is a Test-Morita equivalence)!
- Moreover, $J_{\mathbb{S}} \colon \mathbb{S} o \widehat{\mathbb{S}}$ is a Left-Morita equivalence, i.e.

 $\forall \mathcal{L} \in \mathsf{LSkt} \qquad - \circ J_{\mathbb{S}} \colon \mathsf{Skt}(\mathbb{S}, \mathcal{L}) \simeq \mathsf{Skt}(\widehat{\mathbb{S}}, \mathcal{L}) = \mathsf{LSkt}(\widehat{\mathbb{S}}, \mathcal{L})$

• Skt^M = sketches (Left) Morita equivalent to a small sketch.

- S and \widehat{S} have the same models (i.e. J_S is a Test-Morita equivalence)!
- Moreover, $J_{\mathcal{S}} \colon \mathcal{S} o \widehat{\mathcal{S}}$ is a Left-Morita equivalence, i.e.

 $\forall \mathcal{L} \in \mathsf{LSkt} \qquad - \circ J_{\mathbb{S}} \colon \mathsf{Skt}(\mathbb{S}, \mathcal{L}) \simeq \mathsf{Skt}(\widehat{\mathbb{S}}, \mathcal{L}) = \mathsf{LSkt}(\widehat{\mathbb{S}}, \mathcal{L})$

Skt^M = sketches (Left) Morita equivalent to a small sketch.
 Theorem (Di Liberti & L.)

LSkt^M is (bi)reflective in Skt^M. Skt^M \neg LSkt^M

Where the Logoi at?

• $S \in Skt$ is (left) rounded if J_S sends cones in L_S to lim diagrams.

E.g. prod, lex, reg, coh, Topoi

E.g. prod, lex, reg, coh, Topoi

Proposition

• \mathscr{S} rounded $\Leftrightarrow \widehat{\mathscr{S}}$ is normal (i.e. $L_{\mathscr{S}} \subseteq \lim \operatorname{diag.} \& C_{\mathscr{S}} \subseteq \operatorname{colim} \operatorname{diag.})$

E.g. prod, lex, reg, coh, Topoi

Proposition

- S rounded ⇔ Ŝ is normal (i.e. L_S ⊆ lim diag. & C_S ⊆ colim diag.)
 S rounded ⇒ Ŝ rounded

E.g. prod, lex, reg, coh, Topoi

Proposition

- S rounded ⇔ Ŝ is normal (i.e. L_S ⊆ lim diag. & C_S ⊆ colim diag.)
 S rounded ⇒ Ŝ rounded

• A logos S is a rounded & left sketch.

E.g. prod, lex, reg, coh, Topoi

Proposition

- S rounded ⇔ Ŝ is normal (i.e. L_S ⊆ lim diag. & C_S ⊆ colim diag.)
 S rounded ⇒ Ŝ rounded
- A logos S is a rounded & left sketch. E.g. Topoi

E.g. prod, lex, reg, coh, Topoi

Proposition

- \$ rounded $\Leftrightarrow \widehat{\$}$ is normal (i.e. $L_{\$} \subseteq \lim \text{diag. } \& C_{\$} \subseteq \text{colim diag.}$) \$ rounded $\Rightarrow \widehat{\$}$ rounded
- A logos S is a rounded & left sketch. **E.g.** Topoi, λ -ary Topoi

Theorem (Di Liberti & L.)ULogoi^M is (bi)reflective in rSkt^M.rSkt^MrrUU

Theorem (Di Liberti & L.)ULogoi^M is (bi)reflective in rSkt^M.rSkt^MVV<

Logic Fragment	Presentation	Classifying Object
Geometric	Site	Topos
Infinitary	Rounded Sketch	Logos

The End

Thanks for listening!